Stuck? envelope support@mecway.com
MW logo

Mecway

FEA

Product Information

PDFTutorials English Español

PDFManual and verification cases English Español

Meshing Tools Automesh, refine, unrefine, extrude, revolve, sweep, merge, smooth, hollow, fit to cylinder, torispherical head, etc.
File formats LIML, STEP, STL, DXF, UNV, MSH (Gmsh), INP, ...
Post processing Animation, contour plots, deformed view, export to spreadsheet, integration, formulas, stress linearization, etc.

Mecway comes with two solvers (internal and CCX) which you can easily switch between. They each support a different but mostly overlapping set of features.


Linear static Nonlinear static Linear dynamic Nonlinear dynamic Modal vibration Buckling Thermal steady state or transient DC current flow Acoustic resonance
Element types













Plane InternalCCX - InternalCCX - InternalCCX -CCX -- - Internal
Axisymmetric InternalCCX - InternalCCX - -- -- -- - -
Solid InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX InternalCCX Internal Internal
Shell InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX InternalCCX Internal -
Beam InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Truss InternalCCX CCX InternalCCX - InternalCCX InternalCCX -- - -
Axial spring InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Viscous damper -- - InternalCCX CCX -- -- -- - -
Tension only Internal- - -- - -- -- -- - -
Fin -- - -- - -- -- Internal- - -
Resistor -- - -- - -- -- -- Internal -
Materials













General section shape Internal- - Internal- - Internal- Internal- Internal- Internal -
C, T, L sections Internal- - -- - -- -- Internal- Internal -
I-section Internal- - Internal- - Internal- -- Internal- Internal -
solid/hollow rectangle/circle section InternalCCX CCX InternalCCX CCX InternalCCX -CCX Internal- Internal -
Isotropic InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX InternalCCX Internal Internal
Orthotropic InternalCCX CCX InternalCCX CCX InternalCCX -CCX Internal- Internal -
Anisotropic InternalCCX CCX -CCX - -CCX -CCX -- - -
Laminate InternalCCX CCX InternalCCX - InternalCCX -CCX -- - -
Bilinear plastic -- CCX -- CCX -- -- -- - -
Ramberg-Osgood plastic -- CCX -- CCX -- -- -- - -
Neo Hooke hyperelastic -- CCX -- CCX -- -- -- - -
Mooney-Rivlin hyperelastic -- CCX -- CCX -- -- -- - -
First ply failure analysis Internal- - Internal- - -- -- -- - -
Temperature dependent -- - -- - -- -- InternalCCX Internal -
Piezoelectric Internal- - -- - -- -- -- - -
Loads and Constraints













Fixed support InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Frictionless support InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Elastic (Winkler) support InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Compression only support Internal- - -- - -- -- -- - -
Displacement in any direction InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Node rotation about any axis InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Bonded contact InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX InternalCCX Internal Internal
Contact -- CCX -- CCX -- -- -- - -
Beam Flexible Joint Internal- - -- - -- -- -- - -
Force InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Pressure InternalCCX CCX InternalCCX CCX Internal- InternalCCX -- - -
Line pressure Internal- - Internal- - Internal- Internal- -- - -
Hydrostatic pressure InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Moment InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Gravity InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Centrifugal force InternalCCX CCX -- - InternalCCX Internal- -- - -
Gyroscopic effect Internal- - -- - -- -- -- - -
Mass InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX -- - -
Rotational inertia -- - Internal- - Internal- -- -- - -
Rayleigh damping -- - InternalCCX CCX -- -- -- - -
Thermal stress InternalCCX CCX -CCX CCX InternalCCX Internal- -- - -
Temperature InternalCCX CCX -CCX CCX InternalCCX Internal- InternalCCX Internal -
Heat flow rate -- - -- - -- -- InternalCCX - -
Heat flux -- - -- - -- -- InternalCCX - -
Internal heat generation -- - -- - -- -- InternalCCX - -
Convection -- - -- - -- -- InternalCCX - -
Radiation -- - -- - -- -- InternalCCX - -
Thermal contact conductance -- - -- - -- -- -CCX - -
Electric potential Internal- - -- - -- -- -- Internal -
Electric charge Internal- - -- - -- -- -- - -
Current -- - -- - -- -- -- Internal -
Robin boundary condition Internal- - -- - -- -- -- Internal -
Cyclic symmetry InternalCCX CCX -- - InternalCCX -- InternalCCX - -
Stress stiffening -- CCX -- CCX InternalCCX -- -- - -
Constraint equations (MPCs) InternalCCX CCX InternalCCX CCX InternalCCX InternalCCX InternalCCX Internal Internal

CalculiX Solver (CCX)

As well as its own solver, you can use Mecway as a pre- and post-processor for the open source CalculiX CrunchiX solver (CCX). Many features of CCX are available though Mecway's interface with no need for any manual configuration, commands or keywords.

CCX is an external package written by Guido Dhondt and other authors. It is distributed under the GNU General Public License Version 2 and is not part of Mecway. However, as a convenience, it is included with Mecway's installer.

System Requirements

Known Bugs

This section lists known bugs that may have an impact on correctness. It does not include cosmetic or reliability bugs.

Version 12.0

Bug 25.

Version 11.0

Bug 24. Using Mesh tools -> Create -> Element with an invalid node list silently modifies the element with the highest number in these ways: Sets the units for Shell offset and orientation angle to defaults, sets the truss flag if that is required, and moves it to an arbitrary component. When this happens, it will show the message "Error in node list. Element not created."

Bug 25.

Version 10.0

Bug 25.

Version 9.0

Bug 21.

Bug 22.

Bug 23.

Bug 25.

Version 8.0

Bug 16.

Bug 17. When time-dependent temperature or internal heat generation is specified using a table of (time, value) pairs, the specified unit is ignored by the internal solver which only uses K for temperature and W/m^3 for internal heat generation.

Bug 18.

Bug 19.

Bug 20.

Bug 21.

Bug 22.

Bug 23.

Bug 25.

Version 7.0

Bug 11.

Bug 12. With the CCX solver, if a time dependent gravity load and another gravity load have components in the same direction then the combined gravity may be incorrect without showing an error message.

Bug 13.

Bug 14.

Bug 15. Displacement defined by a function of position on an offset shell element uses the positions of the element’s nodes rather than their offset positions to calculate the displacement.

Bug 16.

Bug 18.

Bug 19.

Bug 20.

Bug 21.

Bug 22.

Bug 23.

Bug 25.

Version 6.0

Bug 9.

Bug 10.

Bug 11.

Bug 13.

Bug 14.

Bug 16. Normal pressure with stress stiffening gives incorrect results with the CCX solver (versions 2.10-2.13).

Bug 18.

Bug 19. Beam elements with I or L section imported from Abaqus .inp files are given an incorrect orientation angle. Doesn’t affect CalculiX .inp files because CalculiX doesn’t support those section shapes.

Bug 20.

Bug 21.

Bug 22.

Bug 23. Force loads on line3 beam edge faces are ignored with the CCX solver.

Bug 25.

Version 5.0

Bug 9.

Bug 10.

Bug 11.

Bug 13.

Bug 14.

Bug 18.

Bug 20.

Bug 21.

Bug 22.

Bug 25.

Version 4.0

Bug 8.

Bug 9.

Bug 10. Pressure defined by a function of position on a shell face uses the position of the surface defined by the element’s nodes rather than its face. The face is typically offset by half the element thickness.

Bug 11.

Bug 13.

Bug 14.

Bug 18. When time-dependent pressure is specified using a table of (time, value) pairs, the pressure unit is ignored and it only uses Pa. With normal pressure, this only affects the internal solver. With X,Y,Z pressure (traction), it affects both the internal and CCX solvers.

Bug 20. Face selections on shells and beams are moved to different faces of the same elements in the solution from the CCX solver. This affects the post-processing sum and table tools when they are used on face selections.

Bug 21.

Bug 22.

Bug 25.

Version 3.0

Bug 6.

Bug 7.

Bug 8.

Bug 9.

Bug 11. With the CCX solver, if a time dependent uniform normal pressure load is applied to the same element faces as another uniform normal pressure load then the combined load may be incorrect without showing an error message. The top and bottom faces of a shell element count as a single face for this purpose.

Bug 13.

Bug 14. The damping effect of the 3D Spring-damper element with the internal solver is incorrect when it’s not aligned with the global axes.

Bug 21.

Bug 22. When bonded contact or constraint equations are used with cyclic symmetry and modal vibration together, their slave nodes have incorrect displacements.

Bug 25. A constraint equation that connects 3 or more nodes on different elements or no elements sometimes has incorrect stiffness at some nodes belonging to the equation. It appears as unexpected displacements even though they still satisfy the equation.

Version 2.0

Bug 4. Gravity with more than one load case is incorrectly applied to only the first load case and the force is multiplied by the number of load cases.

Bug 5.

Bug 6.

Bug 7. Compression only support in the same model as non-zero prescribed displacement causes convergence failure with a small convergence tolerance and incorrect results with a large convergence tolerance.

Bug 8.

Bug 9.

Bug 13.

Bug 21.

Version 1.1

Bug 2.

Bug 3.

Bug 5.

Bug 6.

Bug 8.

Bug 9.

Bug 13.

Bug 21.

Version 1.0

Bug 1. Thermal stress with orthotropic material gives incorrect displacements and stresses. Thermal stress with 2D plane strain membrane elements gives incorrect stresses. This bug does not affect isotropic shell and solid elements.

Bug 2. 2D membrane elements give incorrect Tresca stress.

Bug 3. 2D membrane elements with plane strain give incorrect von Mises stress. This bug does not affect plane stress or shell elements.

Bug 5. If a coupled DOF slave node with a coordinate system transformation also has a displacement or rotation constraint on it, then the solver may treat that constraint as being in an incorrect direction. This includes cyclic symmetry slave nodes. The error is visible in the solution's deformed view which shows the constraints being violated where it occurs. To work around this, if you are using cyclic symmetry or coupled DOF with transformations, apply any mechanical constraints to the master nodes instead of slave nodes.

Bug 6. Force loads on beam edge faces are ignored. Two workaround are to apply the force to the nodes or use line pressure instead.

Bug 8. Centrifugal force on 3D beam and truss elements that aren't parallel to the XY plane uses incorrect element mass.

Bug 9. Hydrostatic pressure on a shell face uses the position of the surface defined by the element’s nodes rather than its face. The face is typically offset by half the element thickness.

Bug 13. The Tensile Force solution variable for Spring-damper elements doesn't include the damping force.

Bug 21. Point mass is not applied to nodes without elements, such as nodes connected to the mesh only by constraint equations or coupled DOF.