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Chapter 1

Getting Started

WARNING: DOCUMENTATION IS NOT UP TO DATE

1.1 What is NETGEN

NETGEN is an automatic mesh generation tool for two and three dimensions.
Netgen is open source under the conditions of the LGPL. It comes as stand alone
programme with graphical user interface, or as C++ library to be linked into an
other application. Netgen is available for Unix/Linux and Windows 98/NT. Net-
gen generates triangular or quadrilateral meshes in 2D, and tetrahedral meshes in
3D. The input for 2D is described by spline curves, and the input for 3D problems
is either defined by constructive solid geometries (CSG), see Chapter 2, or by the
standard STL file format. NETGEN contains modules for mesh optimization and
hierarchical mesh refinement. Curved elements are supported of arbitrary order.

1.2 The history of NETGEN

The NETGEN project was started 1994 in the master’s programme of Joachim
Schöberl, under supervision of Prof. Ulrich Langer, at the Department of Compu-
tational Mathematics and Optimization, University Linz, Austria. Its further de-
velopment was supported by the Austrian science Fund “Fonds zur Förderung der
wissenschaftlichen Forschung” (http://www.fwf.ac.at) under projects P 10643-
TEC and SFB 1306. Starting from 2002, the development continued within
the Start project “hp-FEM” (http://www.hpfem.jku.at) granted by the FWF.
In 2006, the Netgen development moved together with J. Schöberl to RWTH
Aachen Universtiy, Germany (http://www.mathcces.rwth-aachen.de/netgen).
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6 CHAPTER 1. GETTING STARTED

1.3 How to receive NETGEN

The latest NETGEN source code release is available from sourceforge

http://sourceforge.net/projects/netgen-mesher

There are file releases, as well as a public SVN repository containing the latest
sources.

The latest NETGEN Windows executable is available from

http://www.mathcces.rwth-aachen.de/netgen

1.4 Installing NETGEN

THIS SECTION NEEDS UPDATE
INFORMATION AVAILABLE AT http://netgen-mesher.wiki.sourceforge.net/

1.4.1 Installing NETGEN for Unix/Linux

To install NETGEN on Unix/Linux you will download the source code and com-
pile it yourself. You need the following libraries:

• The 3D visualization library OpenGL. It comes with most systems with
hardware graphics. The free software version mesagl is available from
http://www.mesa3d.org.

• The graphical toolkit TclTk developed by John Ousterhout (available from
http://www.scriptics.com/) and its extension Tix available from http://www.sourceforge.com)
by Iam Lan. Netgen has been tested with version TclTk 8.0 - TclTk 8.4
and Tix 4.6. - Tix 8.2

You can also download these packages from the Netgen site.
To install NETGEN please move into the directory ng4. You set the Unix-

variable MACHINE according to your machine/operating system, e.g.

setenv MACHINE LINUX

(in bash shell you type export MACHINE=LINUX). The Makefile includes the makefile-
include

libsrc/makefile.mach.$(MACHINE)

Please create/modify the according file, (e.g. copy makefile.mach.LINUX to
makefile.mach.SUN). Then you enter make to build the executable.

To make NETGEN globally available you just copy the binary “ng” to the
global bin - directory. In difference to earlier versions, it needs no additional files.

http://www.mesa3d.org/
http://www.scriptics.com/
http://www.sourceforge.com/


1.4. INSTALLING NETGEN 7

1.4.2 Installing NETGEN for Windows

NETGEN is available now for Windows in binary form. You download the zip -
archive ng4win.zip. After unpacking it with winzip, you can start the executable
“ng4.exe”.

1.4.3 Adding IGES/STEP file support via OpenCascade

NETGEN is capable of importing IGES and STEP geometry files. If you want to
use this functionality you have the add the OpenCascade library to your NET-
GEN distribution.

OpenCascade is an open source 3D solid modeller library by OpenCASCADE
S.A. You can obtain it from http://www.opencascade.org (Linux and Windows).

To compile NETGEN with OpenCascade for Windows just choose the project
settings “Release (OCC)” and adjust the proper search paths.

For Linux adjust the directory search paths OCC DIR, OCCINC DIR and
OCCLIB DIR in the Makefile and in libsrc/makefile.inc. Then add -DOCCGEOMETRY
to the CPLUSPLUSFLAGS2 in libsrc/makefile.mach.$(MACHINE). If you use
OpenCascade version 5.2 also add -DOCC52 and -DHAVE IOSTREAM to the
CPLUSPLUSFLAGS2.

1.4.4 Testing Netgen

Please start Netgen by entering “ng” or clicking the “ng.exe” icon.
A white window with menu items should appear. Please load a geometry

file by selecting ”File -> Load Geometry”, choose e.g. tutorials/cube.geo. Then
press the button ”Generate Mesh”. By keeping pressed the left, middle or right
button of your mouse you can rotate, move or zoom the object. With “File ->

Export Mesh” you can save the mesh file.

http://www.opencascade.org/
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Chapter 2

Constructive Solid Geometry
(CSG)

The CSG input format is a useful geometry format for small and medium size
geometries. One defines the geometry by writing an ASCII file in a text editor.

The geometry is defined by the Eulerian operations (union, intersection and
complement) from primitives. A complete list of availabe primitives is given in
Section 2.2.

The following input describes a cube:

# A cube

algebraic3d

solid cube = orthobrick (0, 0, 0; 1, 1, 1);

tlo cube;

Lines starting with # are comment lines. Every CSG file must contain the
keyword algebraic3d before any non-comment line. The keyword solid defines
a named solid, here the solid cube is defined. A solid is defined by the Eulerian
operations applied to primitives. Here, the solid is just the primitve defined by
orthobrick. This is a brick parallel to the axis, specified by the minimal x, y, and
z coordinates, and the maximal x, y, and z coordinates. The present definition
gives the cube [0, 1]3. Finally, the definition tlo cube declares the solid cube as
a top-level-object, what is necessary for meshing.

Please start netgen with the geometry file above by entering

ng cube.geo

Instead, you can also load the geometry from the file menu. You will see a blue
cube, which you can rotate by keeping the left mouse button pressed. Pressing
the big generate mesh button will result in a (very coarse) mesh of that cube.

Instead of using the primitive orthobrick, one can also specify a cube by
intersecting six halfspaces (called planes). Each primitive plane is given by an

9



10 CHAPTER 2. CONSTRUCTIVE SOLID GEOMETRY (CSG)

arbitrary point in the plane, and a outward vector, not necessarily a unit vector.
The six halfspaces are intersected by the keyword and. The following input gives
an equivalent result:

# A cube

algebraic3d

solid cube = plane (0, 0, 0; 0, 0, -1)

and plane (0, 0, 0; 0, -1, 0)

and plane (0, 0, 0; -1, 0, 0)

and plane (1, 1, 1; 0, 0, 1)

and plane (1, 1, 1; 0, 1, 0)

and plane (1, 1, 1; 1, 0, 0);

tlo cube;

To drill a hole though the cube, we will intersect the cube and the comple-
ment of a cylinder. A cylinder is defined by two points on the central axis, and
the radius. Please note, a cylinder is understood as an infinitely long cylinder
(although the visualization may suggest a finite cylinder):

# cube with hole

algebraic3d

solid cubehole = orthobrick (0, 0, 0; 1, 1, 1)

and not cylinder (0.5, 0.5, 0; 0.5, 0.5, 1; 0.1);

tlo cubehole;

Like and denotes the intersection, or denotes the union:

solid cubeball = orthobrick (0, 0, 0; 1, 1, 1)

or sphere (0, 0, 0; 0.5) -maxh=0.2;

The flag -maxh=0.2 assignes the maximal mesh size of 0.2 to the solid. The
current version, NG4.1, uses the mesh size assigned to the main solid of the
top-level-object for the domain. Future version will contain more possibilities to
define mesh-sizes for parts of a domain.

It is possible to define geometries with several sub-domains, simply by declar-
ing several tlos:

algebraic3d

solid cube = orthobrick (0, 0, 0; 1, 1, 1);

solid cyl = cylinder (0.5, 0.5, 0; 0.5, 0.5, 1; 0.1);

solid dom1 = cube and not cyl;

solid dom2 = cube and cyl;

tlo dom1 -col=[0,0,1] -transparent;

tlo dom2 -col=[1,0,0];
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This example show also solid trees involving previously defined named solids.
Top-level-objects can be assigned a color specified by the amount of red, green and
blue (RGB) values. The flag -transparent makes the solid appear transparent.

It is possible to specify bounday condition numbers for individual surfaces of
a solid. The flag -bc assignes the bc to all surfaces of that solid-tree. If several
flags are given the one closest to the leaves of the tree dominates. The following
file defines a cube, with bc = 1 at the bottom, bc = 2 at the top, and bc = 3 for
all other surfaces:

algebraic3d

solid bottom = plane (0, 0, 0; 0, 0, -1) -bc=1;

solid top = plane (1, 1, 1; 0, 0, 1) -bc=2;

solid cube = bottm and top

and plane (0, 0, 0; 0, -1, 0)

and plane (0, 0, 0; -1, 0, 0)

and plane (1, 1, 1; 0, 1, 0)

and plane (1, 1, 1; 1, 0, 0) -bc=3;

tlo cube;

2.1 Curves

For the construction of some of the primitives in the following section it is neces-
sary to define 2D or 3D curves, which are given in terms of straight lines and of
quadratic rational spline patches. A line is given by the two endpoints, a spline
patch by three d’Boor points. The patch is an elliptic arc from point 1 to point
3, such that the lines 1–2 and 2–3 are tangents.

A 2D curve is defined as

curve2d name = (np;
x1, y1;

...

xnp, ynp;

ns;
[ 2 | 3 ], p1,1, p1,2 [, p1,3];

...

[ 2 | 3 ], pns,1, pns,2 [, pns,3]);

The number of points is given by np, the number of segments by ns. Each point
is given by its coordinates, each segment by the number of points (2 for line
segments, 3 for spline patches) and the pointnumbers.

The 3D curves are given analogously by
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curve3d name = (np;
x1, y1, z1;

...

xnp, ynp, znp;

ns;
[ 2 | 3 ], p1,1, p1,2 [, p1,3];

...

[ 2 | 3 ], pns,1, pns,2 [, pns,3]);

2.2 Available Primitives

Netgen supports the following primitives:

1. A halfspace, i.e., a plane and everything on one side of it, given by an
arbitrary point p = (px, py, pz) in the plane and an outside normal vec-
tor n = (nx, ny, nz), not necessarily a unit vector:

plane ( px, py, pz ; nx, ny, nz )

2. A cylinder of infinite length, given by two points a = (ax, ay, az) and b =
(bx, by, bz) on the central axis and the radius r:

cylinder ( ax, ay, az ; bx, by, bz ; r )

3. A sphere, given by the center c = (cx, cy, cz) and the radius r:

sphere ( cx, cy, cz ; r )

4. An elliptic cylinder, given by the point c = (cx, cy, cz) on the main axis, and
the vectors v and w of the long and short axis of the ellipse, respectively:

ellipticcylinder (cx, cy, cz ; vx, vy, vz ; wx, wy, wz)

5. An ellipsoid, given by the center c = (cx, cy, cz), and the vectors u, v and w
of the main axis of the ellipsoid:

ellipsoid (cx, cy, cz ; ux, uy, uz; vx, vy, vz ; wx, wy,

wz)

6. A cone is given by two points on the central axis and the two corresponding
radii. It is not possible to mesh the top of the cone yet, it must be cut off.

cone ( ax, ay, az ; ra; bx, by, bz ; rb )

7. A orthobrick is a brick parallel to the coordinate axis. It is specified by two
opposite corner points a = (ax, ay, az) and b = (bx, by, bz):
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orthobrick ( ax, ay, az ; bx, by, bz )

8. A polyhedron is defined by a set of triangles forming a closed polyhedron.
First, a set of points is defined, then the triangles are given by point indices.
The triangles must be oriented counter-clockwise when looking onto the
object. The following polyhedron describes a tetrahedron:

algebraic3d

solid poly = polyhedron (0,0,0; 1,0,0; 0,1,0; 0,0,1 ;;

1,3,2 ; 1,4,3; 1,2,4 ; 2,3,4 );

tlo poly;

9. A body of extrusion is defined by its profile (which has to be a closed,
clockwise oriented 2D curve), by a path (a 3D curve) and a vector d. It is
constructed as follows. Take a point p on the path and denote the (unit-)
tangent of the path in this point by t. If we cut the body by the plane given
by p and t as normal vector, the cut is the profile. The profile is oriented by
the (local) y-direction ȳ := d− (d · t)t and the (local) x-direction x̄ := t× ȳ.
The syntax is:

extrusion ( <name of pathcurve>; <name of profilecurve>;

dx, dy, dz )

The following points have to be noticed:

• If the path is not closed, then also the body is NOT closed. In this
case e.g. planes or orthobricks have to be used to construct a closed
body.

• The path has to be smooth, i.e. the tangents at the end- resp. start-
point of two consecutive spline or line patches have to have the same
directions.

10. A body of revolution is given by two points, defining the axis of revolution,
and the 2D curve which is rotated:

revolution ( p1,x, p1,y, p1,z; p2,x, p2,y, p2,z; <name of curve>)

The first point defines the origin of the local 2D coordinate system of the
curve. It is assumed, that the curve lies above the (local) x-axis, and that
it is described clockwise.

If the curve is not closed, then the start point and the end point have to
lie on the x-axis, and the tangents at those points have to be orthogonal to
the x-axis.
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2.3 Surface Identification

In Netgen it is possible to construct prismatic meshes between two surfaces, where
these surfaces have to be specified explicitely in the .geo file with the command

identify closesurfaces <surface1> <surface2>;

(this feature originally was intented for close surface, which is the reason for the
command name).

Optional parameters: (selection)

• -tlo=<name of top level object>

the prisms are only constructed between two faces of a tlo.

• -direction=[<x>,<y>,<z>]

This parameter has to be used if skew prisms should be built. In this
case netgen “needs help” by the user, it needs to know the direction of
identification.

Example: We start with a cylinder with the axis given by the points
(−1, 0, 4) and (4, 10, 1). This cylinder is cut by the planes p1 and p2 (which
are not necessarily normal to the axis and not necessarily parallel) and we
want to build prisms between these planes. Then the command would, e.g.,
look like

identify closesurfaces p1 p2 -direction=[5,10,-3]

2.4 Known problems and work-arounds

2.4.1 Interfaces

A airdomain with two connected interior parts may be described by

algebraic3d

solid cube = orthobrick (0, 0, 0; 1, 1, 1);

solid part1 = orthobrick (0.2, 0.2, 0.2; 0.5, 0.8, 0.8);

solid part2 = orthobrick (0.5, 0.2, 0.2; 0.8, 0.8, 0.8);

solid air = cube and not part1 and not part2;

tlo air;

tlo part1;

tlo part2;
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The problem is, that a domain is an open domain. Thus, the domain air is not
only the outer part, but also the interface between part1 and part2. The result
is unspecified. To fix this problem, one can define the air-domain by cutting out
one big brick:

solid air = cube and not othrobrick (0.2, 0.2, 0.2; 0.8, 0.8, 0.8);

2.4.2 Degenerated edges

Degenerated edges are found sometimes, but some still cause troubles. A sphere
on top of a cylinder my be described by:

solid cyl = cylinder (0, 0, 0; 1, 0, 0; 0.5)

and plane (0, 0, 0; -1, 0, 0)

and plane (1, 0, 0; 1, 0, 0);

solid main = cyl or sphere (1, 0, 0; 0.5);

tlo main;

The edge is a degenerated one. A work-around is to split the domain (artificially)
into two non-degenerated parts:

solid cyl = cylinder (0, 0, 0; 1, 0, 0; 0.5)

and plane (0, 0, 0; -1, 0, 0)

and plane (1, 0, 0; 1, 0, 0);

solid hemisphere = sphere (1, 0, 0; 0.5) and not plane (1, 0, 0; -1, 0, 0);

tlo cyl;

tlo hemisphere;
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Chapter 3

Other Geometry Formats

3.1 Using IGES/STEP Geometries

IGES and STEP are standard exchange formats for CAD files. Contrary to the
STL format, IGES and STEP deliver an exact representation of the geometry
and do not approximate it. In order to use IGES/STEP geometries you have to
install NETGEN with the OpenCascade Geometry Kernel as described in 1.4.3.
Most solid modellers can export IGES or STEP files. However, often these files
are not as exact as a mesher needs them to be. So is meshing fails, try repairing
the model via IGES/STEP Topology Explorer/Doctor.

3.2 Using STL Geometries

STL is a standardized file format to describe (approximate) geometies by trian-
gulated surfaces. It is useful to describe complicated parts which are modeled
with some CAD programmes. Also, some users have written their own (C) pro-
grammes to define STL geometries, where was not so easy to use the CSG format.
The syntac of STL files is as follos

(not available yet. please figure out the syntax from the examples)

We found that many STL geometries have some difficulties. Some of them
can be corrected (removed) by the STL - Doctor. Please see the corresponding
manual pages (not available yet).

3.3 2D Spline Geometry

The extension for 2D spline geometry is “.in2d”.
The boundary is given in terms of straight lines and of quadratic rational

spline patches. A line is given by the two endpoints, a spline patch by 3 d’Boor

17



18 CHAPTER 3. OTHER GEOMETRY FORMATS

points. The patch is an elliptic arc from point 1 to point 3, such that the lines
1-2 and 2-3 are tangents.

It is possible to use different subdomains with this format.
This file format also supports a priori mesh grading. To the spline point i

one adds a local refinement factor rpi . Close to this point the mesh-size h(x)
is hGlob / rpi . The global parameter grading describes how fast the mesh-
size decreases. The gradient of the local mesh-size function h(x) is bounded by
|∇xh(x)| ≤ grading−1 Also a refinement by a factor rsi ¿ 1 along the whole
segment i is possible. The file looks like:

splinecurves2d

grading

np

x1 y1 rp1

...

xnp ynp rpnp

ns

dil1 dir1 [ 2 | 3 ] pi1,1 pi1,2 [ pi1,3 ] rs1

...

dilnl dirnl [ 2 | 3 ] pinl,1 pinl,2 [ pinl,3 ] rsnl

np is the number of points, ns the number of spline segments. Every segment
starts with the domain numbers at the left and at the right sides of the segment.
Domain number 0 is reserved for the exterior. Then the number of points and
two or three point indices follow. Finally, the refinement factor along the line
follows.



Chapter 4

Mesh and Solution Formats

You can export meshes to a couple of file formats. Some are self-defined, some
other are standard formats. The self-defined are the followings:

4.1 Mesh Size File

By means of a mesh size file you can provide a local mesh size density. The file
extension must be .msz. If you want to use the mesh size file, you specify it in
the “Meshing Options”, doalog box, page “Mesh Size”.

The syntay is:

np

x1 y1 z1 h1

x2 y2 z2 h2

....

xnp ynp znp hnp

nl

xs1 ys1 zs1 xe1 ye1 ze1 h1

xs2 ys2 zs2 xe2 ye2 ze2 h2

....

xsnl ysnl zsnl xenl yenl zenl hnl

You specify np points, given by the (xi, yi, zi)-coordinates, where the mesh size
will be reduced at least to hi. You specify also nl line-segments by the start-point
and end-point coordinates. The mesh-size along the whole line will be reduced
to the given hi.

4.2 Neutral Format

The neutral volume mesh format contains the following sections:

19
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1. nodes
After the number of nodes there follows a list of x, y, and z-coordinates of
the mesh-nodes.

2. volume elements
After the number of volume elements there follows the list of tetrahedra.
Each element is specified by the sub-domain number, and 4 node indices.
The node indices start with 1.

3. surface elements
After the number of surface elements there follows the list of triangles. Each
element is specified by the boundary condition number, and 3 node indices.
The node indices start with 1.

4.3 Fepp Format 2D

The Fepp 2D format contains the following sections:

1. boundary segmetns
After the number of boundary segments there follows a list of segments.
Each segment is specified by the spline - patch number, and the two node
indices. Counting starts with 1

2. domain elements
After the number of domain elements there follows the list of elements.
Each element is specified by the sub-domain number, the number of nodes
(3 or 4) and the node indices. Counting starts with 1

3. nodes
After the number of nodes there follows a list of x and y -coordinates of the
mesh-nodes.

4. geometric information
After the number of spline patches there follows a list of spline specifi-
cations. Each spline patch is given by the 6 coefficients of the descibing
quadratic polynomial equation

c1x
2 + c2y

2 + c3xy + c4x + c5y + c6 = 0

4.4 Surface triangulaton file

One can export to and import from a surface mesh file. Its structure is as follows:

1. surfacemesh

starts with that keyword
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2. number of points
point coordinates (x, y, z).

3. number of surface triangles,
surface triangles oriented counter-clock wise when looking at the object,
index starts from 1.

4.5 Solution File Format

The Netgen software includes also a simple visualizer for finite element gridfunc-
tions. It supports scalar fields (e.g. temperature), and vector valued fields (flow
velocities, mechanical deformations). The solution field is imported by the menu
item File − > Import Solution. It is important to load the corresponding mesh
in advance.

The format of the solution file is as follows. It consists of an arbitrary number
of blocks of this structure:

1. solution function-name flags

solution is the keyword, function-name is a string to refer to that func-
tions. The supported flags are

(a) -size=s
number of entries (default: number of mesh-points)

(b) -components=c
number of components (default: 1). Mechanical deformations have 3
components.

(c) -type=[nodal,element,surfaceelement]
the grid-funciton has nodal values, or one value per volume element,
or one value per surface element (default: nodal)

2. block of size× components values

Please try out to import the solution file ’tutorials/cube.sol’ fitting to the
mesh ’tutorials/cube.vol’.
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Chapter 5

Netgen operations

You can use netgen in interactive mode using its menus, or, you can run netgen
in batch-mode using command line arguments.

5.1 Command line arguments

Command line arguments are specified as -flag=value.

• -help
Prints the availabel command line arguments

• -geofile=filename
Specifies geometry file. Is equivalent to filename, i.e., you can scip -geofile=.

• -meshfile=filename
Mesh file will be stored in file filename.

• -batchmode
Exit after mesh generation. Otherwise, the GUI will be started

• -V
Verbose mode. Prints some additional information

• -verycoarse, -coarse, -moderate, -fine, -veryfine
Mesh size control

23
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Chapter 6

Using the Graphical User
Interface

The Netgen main window looks like:

It consists of the menuline and the button line at the top, the status line at the
bottom, and the large drawing window. The menu items will be explained in 6.1.
The button line provides shot-cuts for common opteration:

• Quit
Terminate Netgen

25
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• Generate mesh
Performe mesh generation

• Stop Meshing
Stop mesh generation

• Geometry/Edges/Mesh/Solution
Switch between operation modes of visualization.

• Zoom all
Zooms such that the whole visualization scene fits into the window.

• Center
Center rotation and scaling at marked point, available only in mesh - vi-
suailzation mode.

• Rotate/Move/Zoom Left mouse drag rotates/moves/zooms object.

The status line shows information, namely

• Points
Number of points in the mesh

• Elements
Number of volume elements (3D) in the mesh

• Surf Elements
Number of surface elements (3D) or inner elements (2d) in the mesh.

• Mem
Used memory in the large memory arena

• Meshing Job, percentage Douriing mesh generation, the current job as well
as the progress is displayed on the right side of the statu line.

The drawing window displays the geometry or the mesh. The view can be
changed with the mouse:

• drag with left button pressed rotates the object,

• drag with middle button pressed moves the object,

• drag with right button pressed zooms the object.

The view can also be changed with the keyboard:

• cursor keys rotate the object

• shift + cursor keys move the object
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• control + cursor keys zoom the object

When in Mesh - visualization scene, double clicking on triangles mark the
surface. The point cursor is set.

6.1 The Netgen menu items

6.1.1 The menu item File

6.1.2 The menu item Geometry



28 CHAPTER 6. USING THE GRAPHICAL USER INTERFACE

6.1.3 The menu item Mesh

6.1.4 The menu item View
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6.1.5 The menu item Refinement

6.2 Meshing Options
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6.3 Visualization Options



Chapter 7

Programming Interfaces

7.1 The nginterface

By means of the nginterface one’s own simulation code can be included into the
netgen environment. This is particular useful for FEM (FVM,BEM) code devel-
opers, since they may profit from the netgen preprocessing and postprocessing
possibilities.

Please download the example Netgen-add-on module demoapp and follow the
instructions therein

7.2 The nglib

7.2.1 Introduction

The NETGEN mesh generation library nglib is available in C++ source code
and can be compiled for Unix/Linux as well as Win95/98/NT and linked to one
library file. The interface to the application programme is by the C language
header file nglib.h.

The functionality of nglib is volume mesh generation by a domain given by a
surface triangulation, and surface mesh generation from a domain described by an
STL file (standard file format for geometries defined by triangle approximation).
It can do mesh optimization as well as mesh refinement. It can generate 4 node
tetrahedra and 10 node tetrahedrons (with quadratic shape functions). The local
mesh size can be defined automatically by geometric features and/or by user
specification.

7.2.2 The Header File

The interface file contains the following type definitions and function calls. All
Netgen types and functions start with Ng. Types and functions have capital

35



36 CHAPTER 7. PROGRAMMING INTERFACES

initial letters, constants are in capital letters.

7.2.3 Types and Constants

/// Data type for NETGEN mesh

typedef void * Ng_Mesh;

/// Data type for NETGEN STL geomty

typedef void * Ng_STL_Geometry;

// max number of nodes per element

#define NG_VOLUME_ELEMENT_MAXPOINTS 10

// implemented element types:

enum Ng_Volume_Element_Type { NG_TET = 1, NG_PYRAMID = 2, NG_PRISM = 3,

NG_TET10 = 4 };

// max number of nodes per surface element

#define NG_SURFACE_ELEMENT_MAXPOINTS 6

// implemented element types:

enum Ng_Surface_Element_Type { NG_TRIG = 1, NG_QUAD = 2,

NG_TRIG6 = 3 };

struct Ng_Meshing_Parameters

{

double maxh;

double fineness; // 0 .. coarse, 1 .. fine

int secondorder;

};

enum Ng_Result { NG_OK = 0,

NG_SURFACE_INPUT_ERROR = 1,

NG_VOLUME_FAILURE = 2,

NG_STL_INPUT_ERROR = 3,

NG_SURFACE_FAILURE = 4 };

Ng Mesh is a data type representing a Netgen mesh. Ng STL Geometry rep-
resents an STL geometry. One can operate on these data structures by the
functions defined below. Netgen can (now and/or in future) work with various
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element types defined by generic constants. Several parameters can be speci-
fied in the Ng Meshing Parameters structure for volume and/or surface mesh
generation. The result of Netgen functions is of type Ng Result.

7.2.4 Initialization

Please call these functions before using netgen functions and after using netgen
functions, respectively:

// initialize, deconstruct Netgen library:

void Ng_Init ();

void Ng_Exit ();

7.2.5 Mesh access

Netgen meshes can be processed by the means of the following functions. A mesh
contains nodes, surface elements and volume elements. Counting starts from 1.

// Generates new mesh structure

Ng_Mesh * Ng_NewMesh ();

void Ng_DeleteMesh (Ng_Mesh * mesh);

// feeds points, surface elements and volume elements to the mesh

void Ng_AddPoint (Ng_Mesh * mesh, double * x);

void Ng_AddSurfaceElement (Ng_Mesh * mesh, Ng_Surface_Element_Type et,

int * pi);

void Ng_AddVolumeElement (Ng_Mesh * mesh, Ng_Volume_Element_Type et,

int * pi);

// ask for number of points, surface and volume elements

int Ng_GetNP (Ng_Mesh * mesh);

int Ng_GetNSE (Ng_Mesh * mesh);

int Ng_GetNE (Ng_Mesh * mesh);

// return point coordinates

void Ng_GetPoint (Ng_Mesh * mesh, int num, double * x);

// return surface and volume element in pi

Ng_Surface_Element_Type

Ng_GetSurfaceElement (Ng_Mesh * mesh, int num, int * pi);

Ng_Volume_Element_Type

Ng_GetVolumeElement (Ng_Mesh * mesh, int num, int * pi);
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Mesh Generation

The user can specify the mesh size function by the global parameter maximal
mesh size, and can additionally restrict the mesh size in points or cubes. The
function Ng GenerateVolumeMesh generates the volume mesh starting from the
surface.

// Defines MeshSize Functions

void Ng_RestrictMeshSizeGlobal (Ng_Mesh * mesh, double h);

void Ng_RestrictMeshSizePoint (Ng_Mesh * mesh, double * p, double h);

void Ng_RestrictMeshSizeBox (Ng_Mesh * mesh, double * pmin, double * pmax, double h);

// generates volume mesh from surface mesh

Ng_Result Ng_GenerateVolumeMesh (Ng_Mesh * mesh, Ng_Meshing_Parameters * mp);

7.2.6 STL Geometry

A STL geometry can be read from a STL file (ASCII or binary), or can be
assembled by providing triangle by triangle. Either, the user can specify the
edges of the geometry, or netgen can define edges by Ng STL MakeEdges by using
an angle criterium.

// loads geometry from STL file

Ng_STL_Geometry * Ng_STL_LoadGeometry (char * filename, int binary = 0);

// generate new STL Geometry

Ng_STL_Geometry * Ng_STL_NewGeometry ();

// fills STL Geometry

// positive orientation

// normal vector may be null-pointer

void Ng_STL_AddTriangle (Ng_STL_Geometry * geom,

double * p1, double * p2, double * p3, double * nv);

// add (optional) edges:

void Ng_STL_AddEdge (Ng_STL_Geometry * geom,

double * p1, double * p2);

// after adding triangles (and edges) initialize

Ng_Result Ng_STL_InitSTLGeometry (Ng_STL_Geometry * geom);

// automatically generates edges:

void Ng_STL_MakeEdges (Ng_STL_Geometry * geom);
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// generates mesh, empty mesh be already created.

Ng_Result Ng_STL_GenerateSurfaceMesh (Ng_STL_Geometry * geom,

Ng_Mesh * mesh,

Ng_Meshing_Parameters * mp);

7.2.7 Programming Example

The File ngcore.cc, see Appendix A, is a simple application using the netgen
volume mesh generator. First, the surface mesh is read from a file containing
point coordinates and surface triangles (see e.g. file cube.surf). The volume mesh
generate is called, and the volume mesh is written to the standard output, see
file cube.vol.
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