MODAL ANALISYS

MODE	EIGENVALUE		W	F	
			[Rad/s]	Hz	
	1	8.3396	2.8878	0.4596	
	2	50.7365	7.1230	1.1337	
	3	197.9908	14.0709	2.2395	
	4	2,006.7800	44.7971	7.1297	
	5	2,700.5010	51.9663	8.2707	
	6	8,667.4600	93.0992	14.8172	
	7	25,715.7300	160.3612	25.5223	
	8	26,344.6700	162.3104	25.8325	
	9	62,024.0800	249.0463	39.6370	
	10	99,093.9200	314.7919	50.1007	
	Pe	ack one		3.15	То
Peack two		ack two		4.03	T1
System Main Freque			ency	1.136	Hz
	Ŵ	1		7.140	rad/s

Determination of the damping ratio from the logarithmic decay

Percentage of loss in Apmplitude in one Cycle.	15%	START HERE
X0/X1	1.18	
δ	0.1625	
ζ1	0.02586	

Damping proportional to the stiffness. $\alpha = 0$ It is then most common to assume the case of damping proportional to the stiffness, that is, $\alpha = 0$, and the β stiffness coefficient is computed from:

	YO	0.031356	mm
	Y1	0.026683	mm
v1.	14.90%		
	0.64%		